Preparation and Properties of Phosphito-P(triazenato-N¹, N³) mercury Compounds and their PPh₃ Coordi**nation Complexes**

JOHANN EICHBICHLER and PAUL PERINGER*

Institut fir Anorganische und Analytische Chemie der Universitdt Innsbruck, Innrain 52a, A-6020 Innsbruck, Austrin

Received June 2, 1981

Various redistribution systems 1 and 2

1 HgT₂ + HgY₂ \Rightarrow 2THgY

2 HgL₂ + HgY₂ \Rightarrow 2LHgY

 $(T = Ar-N-N=N-Ar = 1.3$ diaryl-1-triazenato; $L =$ phosphito, phosphonito and phosphinito $-$ all bonded through P, $Y = CI$, Br, 1, CN, SCN, Ph, EtS, PhS, PhSe and $Mn(CO)_{s}$ have been investigated in the past few years $[1-10]$. Interest developed in (i) synthetic aspects (depending on the position of the redistribution equilibrium in the solid state), (ii) the position of the redistribution equilibrium in solution, (iii) ligand exchange processes, (iv) the ambidentate P/O system for compounds involving L, (v) the bonding mode of the triazenato $($ = triazaallyl) ligands in solution and in the solid state and (vi) monitoring the *trans* influence.

This work deals with synthesis and properties of $(EtO)₂P(O)HgT$, compounds, involving a phosphorus-mercury-nitrogen bond sequence, and their PPh₃ coordination complexes.

Results and Discussion

The new compounds $(EtO)_2P(O)HgN_3(2XC_6H_4)_2$ $(X = H, Me, F, Cl, Br, I, NO₂)$ were made by synproportionation of the respective symmetric compounds in solution (eqn. 1)

$$
HgL_2 + HgT_2 \rightleftharpoons 2LHgT \qquad L = (EtO)_2P(O) \qquad (1)
$$

The redistribution equilibrium was found (by NMR) to position completely on the (right) side of the asymmetric mercury compounds. In view of the S/N ratio obtained $K = [THgL]^2/([HgL_2] [HgT_2])$ is greater than 10^4 . This corresponds thus to L = Ph [4, 6, 7] and $Mn(CO)$ ₅ [5] (eqn. 1) whereas for L = Cl, Br, I, CN, SCN, SPh and SePh [7,8] the corresponding symmetric compounds are also present in the equilibrium. As monitored by 3'P NMR the reaction takes about thirty minutes in pyridine at ambient temperature and proceeds considerably slower in (more apolar) $CH₂Cl₂$. An alternative route is the reaction of equimolar amounts of $HgT₂$ and LH according to eqn. 2. Analogous to other Hg-N or $Hg-O$ bonded species $[11]$ this reaction proceeds

$$
HgT_2 + LH \rightleftharpoons LHgT + TH \qquad L = (EtO)_2P(O) \qquad (2)
$$

completely to the right side. The reaction takes about a day in pyridine at room temperature.

Some of the compounds were isolated in the solid state as orange yellow, well crystalline, air and moisture stable substances, readily soluble in organic solvents. Analytical data are given in Table I.

The ^{31}P and ^{199}Hg NMR parameters are presented in Table I. The size of $J(^{31}P-^{199}Hg)$ indicates one bond coupling and thus direct bonding of phosphorus to mercury, as has been observed for other phosphito-mercury compounds $[1, 3, 10]$.

X	1 J($^{31}P-^{199}Hg$) ^b	$\delta({}^{199}\text{Hg})^{\text{c}}$	$\delta({}^{31}P)^{\circ}$	mp ^d	$\rm{c}^{\rm{e}}$	$H^{\mathbf{e}}$	N^e	C^{f}	$\boldsymbol{\mathsf{H}}^\mathbf{f}$	N^{f}
H	11856	1086	70.4	142	35.5	3.7	7.7	36.0	3.8	7.9
CH ₃	11898	1097	69.1	$103 - 108$	37.9	4.3	7.4	38.5	4.3	7.5
F	12012	1052	66.0	$150 - 156$	33.5	3.0	7.5	33.7	3.2	7.4
CI	12617	1093	66.3	$133 - 139$	32.2	2.9	7.1	31.9	3.0	7.0
Br	12844	1098	66.8	$159 - 160$	27.6	2.6	6.3	27.8	2.6	6.1
L	12920	1103	69.6	$170 - 172$	24.4	2.1	5.4	24.5	2.3	5.3
NO ₂	13127	1055	64.2	$136 - 140$	31.0	2.7	11.3	30.8	2.9	11.2

TABLE I. NMR^a and Analytical Data of $(2XC_6H_4)_2N_3Hg(0)P(OEt)_2$.

^a0.5 m in pyridine, 300 K. ^bIn Hz. ^cIn ppm to high frequency of aqueous Hg(ClO₄)₂ (2 mmol HgO/ml 60% HClO₄) or 85% H₃PO₄. ^d^oC, uncorrected. ^eFound. ¹Calculated.

^{*}Author to whom correspondence should be addressed.

X	$\delta({}^{31}P)^{\mathbf{b}}$	$\delta({}^{31}P)^{\mathbf{b}}$ PPh_3	$\delta(^{199}He)^b$	$1J(^{31}P-^{199}Hg)^c$ L	$1J(^{31}P-^{199}Hg)^c$ PPh_3	$2J(^{31}P-{}^{31}P)^c$ L -PP h_3
CH ₃	88.8	39.1		10641	1569	280
F	89.8	43.3	1762	10768	1839	284
Cl	87.5	43.2	1701	11031	2039	286
L	89.1	40.1		11324	2072	289
NO ₂	86.7	43.4		10970	2509	295

TABLE II. NMR^a Data of $(2XC₆H₄)₂N₃Hg(O)P(OEt)₂ (PPh₃).$

 $L = P(O)(OEt)$. ^a0.25 *M* in methylenechloride, 173 K. nil 60% HClO₄) or 85% H₃PO₄^c in Hz.

 b ln ppm to high frequency of aqueous Hg(ClO₄)₂ (2 mmol HgO/</sup>

 1 J(31 P- 199 Hg) of LHgY have been correlated with the *trans* influence of the group Y [1, 3]. The size of $^{1}J(^{31}P-^{199}Hg)$ for Y = T was found in the region of $Y = Br \{1\}$ although it should be noted that the *trans* influence is defined for linear P-Hg-Y configurations whereas the bonding mode of the triazenato group is bidentate (uide *infra).*

 $31P$ and $199Hg$ NMR have also been used to estimate the kinetic behaviour of the mercury ligand bonds involved. The addition of $HgL₂$ or $HgT₂$ to a solution of THgL gives rise to the ^{31}P or ^{199}Hg features of both the symmetric and the asymmetric species. This and the observation of $1J(31P-199Hg)$ demonstrates the kinetic stability of the metalligand bonds involved on these NMR time scales. On the other hand a solution of I in pyridine displays two broad ¹⁹⁹Hg resonances at ambient temperature. At 253 K the 199 Hg spectrum consists of sharp doublets of triplets due to mercury coupl-

ing with one ${}^{31}P({}^{1}J({}^{31}P-{}^{199}He) = 12011$ Hz) and two equivalent ¹⁵N nuclei $[^{1}J(^{15}N-^{199}Hg) = 178$ Hz This indicates the occurrence of intermolecular triazenato ligand exchange processes on this NMR time scale.

The equivalence of the terminal triazenato nitrogen atoms was found to persist down to 233 K. This is compatible either with π triazaallyl bonding or rapid intramolecular Hg exchange between the terminal nitrogen atoms [9]. An X-ray crystal structure [5] of another mixed triazenato mercury compound, $(2ClC_6H_4)_2N_3HgMn(CO)$, revealed slightly different Hg-N bond distances in the crystalline state.

P(0) or PH(BuO)P(O) the latter decompose like tin of mixed THgL compounds:

other phosphonito-Hg compounds of this type, with formation of elemental mercury [3] .

The compounds $(EtO)₂P(O)HgT$ coordinate one equivalent of triphenylphosphine as could be shown to be ^{31}P and ^{199}Hg NMR (Table II).

Whereas at room temperature the complexes are dissociated in part and fast exchange between 'free' and coordinated PPh₃ is observed at low temperatures the PP h_3 complex is formed quantitatively and the Hg-PPh, bond becomes kinetically stable (with exception of $X = H$). The kinetic lability of the PPh₃ complexes varies with the substituent in *ortho* position of the aryl groups of the triazenato ligand and was found to decrease in the order $H >$ $Me > F > 1 \approx C1 > NO₂$. The bonding mode of the triazenato group in these complexes could not be determined: at 173 K in $CH₂Cl₂$ the triazenato group of the triphenyl-phosphine complex of 1 is still involved in intermolecular exchange dynamics.

Attempts to coordinate a second equivalent of PPh₃ failed. The ³¹P NMR spectrum of a mixture $(EtO)_2P(O)HgT:PPh_3 = 1:2$ displayed at 173 K the pattern of the mono PPh₃ adduct besides noncoordinated PPh₃.

The interpretation of the coordination effects in ³¹P and ¹⁹⁹Hg NMR corresponds largely to that of phosphine coordination complexes of other phosphito mercury compounds [121.

The complex $(2NO₂C₆H₄)N₃Hg(O)P(OEt)₂ \cdot PPh₃$ has been isolated in the solid state.

Experimental

The NMR spectra were recorded in the FT-mode on a Bruker WP-80 multinuclear spectrometer equipped with a Bruker B-VT-1000 variable temperature unit. Chemical analysis were obtained with a Heraeus EA 415, mass spectra with a Varian Mat CH 7 (70 eV). The symmetric HgT₂ and HgL₂ compounds were prepared as described previously $[7, 13]$.

Mixed LHgT can also synthesized for $L = (t-Bu)_2$ - The following procedure is typical for the prepara-

731 mg (1 mmol) Hg $[(2ClC_6H_4)_2N_3]_2$ and 475 mg (1 mmol) of $Hg[(EtO)₂P(O)]₂$ are allowed to react in 3 ml of pyridine at room temperature for one hour. After evaporation of the solvent recrystallisation from toluene-petrolether yields bis(2chlorophenyl)-1-triazenato- N^1 , N^3 (diethylphosphito-P)mercury in almost quantitative yield (m/e: 601 (M' for 35 Cl and 200 Hg)).

Bis(2-nitrophenyl)-1-triazenato-N(diethylphosphito-P) (triphenylphosphine-P)mercury was obtained by slow evaporation of a equimolar solution of $(EtO)₂P(O)HgN₃(2NO₂C₆H₄)₂$ and PPh₃ in toluene as red crystals.

M.p.: 98-105 "C, C: 46.2(46.1), H: 3.6(3.8), $N: 8.1(7.9)$.

Acknowledgements

Thanks are due to the Fonds zur Förderung der Wissenschaft, Vienna, for making available the NMR instrument.

References

- 1 J. Benett, A. Pidcock, C. R. Waterhouse, P. Coggon and A. T. McPhail, J. Chem. Soc. (A), 2094 (1970).
- *2* P. Peringer and J Eichbichler, J. *Inorg. Nucl. Chem.,* in press.
- 3 J. Eichbichler and P. Peringer, *Inorg. Chim. Acta, 43, 121 (1980).*
- *4* P. Peringer, Z. *Naturforsch., 33b, 1091 (1978).*
- 5 P. E. Jaitner, P. Peringer, G. Huttner and L. Z. Zsolnai, *Transition Met. Chem., 6, 86 (1981).*
- 6 P. Peringer,Monatsh. Chem., 110, 1123 (1979).
- 7 P. Peringer, *Inorg. Nucl. Chem. Lett., 16, 461 (1980).*
- *8* P. Peringer,Monatsh. Chem., 111, 1245 (1980).
- 9 P. Perineer. Znora. *Chim. Acta. 42. 129 (1980).*
- 10 C. Glidewell, *Inorg. Chim. Acta*, 27, 129 (1978).
- 11 P. Peringer and J. EichbicNer, *J. Inorg. Nucl. Chem.,* in press.
- 12 1. Eichbichler and P. Peringer, to be published.
- 13 D. L. Venezky and R. B. Fox, *J. Am.* Chem. Sot., 78, 1664 (1956).